Makerspace: Literally

If you work in education, chances are you have heard of a ‘makerspace’ or, perhaps, you have one at your school or place of business. I cannot help but notice that many people seem to throw the term around without a true understanding of what it actually means. Makerspaces have become a must-have for any future-ready school and, although I agree with the potential they have to enhance learning experiences, it is crucial that we understand the characteristics before putting hammer to nail.

Helping to clarify any confusion, below is an infographic I created, which explains: a) what a makerspace is, b) where they are typically formed, c) what types of equipment and tools they include, d) why they are so popular and e) what they can look like. Of note, it is important to remember that offering a makerspace to individuals will only prove to be as successful as the curiosity they possess, their desire to learn, and their willingness to participate. Nevertheless, I am a firm believer that, when people witness others around them creating, it inspires them to join, contributing to the iterative process that fuels innovation.

As always, I welcome any comments, questions or feedback you may have!

Explee TM (2014). What is a MakerSpace? Retrieved from https://youtu.be/NLEJLOB6fDw

Florin, F. (2015). Retrieved from https://www.flickr.com/photos/fabola/22521685607/in/photostream/

Halverson, E.R. & Sheridan, K. (2014). The maker movement in education. Harvard Educational Review, 84(4), 495-465.

Male, M. (2015). Retrieved from https://www.flickr.com/photos/mastermaq/18962871653

Sheridan, K. Halverson, E.R., Litts, B.K., Brahms, L, Jacobs-Priebe, L., & Owens, T. (2014) Learning in the making: A comparative case-study of three maker spaces. Harvard Educational Review, 84(4), 505-565.

Maker Lesson: Designing an Ideal Classroom Prototype

When I first got my hands on my recently purchased Makey Makey kit, I thought to myself, ‘how could it be that a device such as this — so compact and simple-by-design — helps individuals exhibit so much creativity?’ It was not  until I began tinkering with it that it clicked. Although the kit came with a few example how-to instructions for completing different projects, there was not a strict set of rules explaining how to use it. The autonomy and enjoyment that Makey Makey provides its users is what leads to it being used in such innovative ways. It is not that Makey Makey itself is revolutionary, but rather what it offers the individuals using it: creativity without limits.

Building on my exploration of ‘personalized learning’ last week, I discussed in my previous post that educators must be wary of over-emphasizing the use of adaptive learning systems; consequently, it seems to marginalize students’ freedom to choose how they learn (Roberts-Mahoney, Means & Garrison, 2016). Instead, by offering project- and inquiry-based learning activities, students can invest in their learning, finding enjoyment in the process.

My finished prototype

My finished prototype

This week, I have developed a lesson that offers students the ability to design their ideal classroom, challenging their constructivist view of what a traditional classroom is comprised of. Of note, the lesson can be viewed here. According to Angela M. O'Donnell, Rutgers University Educational Psychologist, “Knowledge is constructed by the learner and informed and influenced by the learner’s previous experiences” (2012, p. 61). The task of having students observe and assess their past and current classroom designs, research the future of collaborative learning spaces and then create a prototype of their ideal classroom to meet the needs and desires of students, taps into their previous experiences and suggests that there is always room for innovation. Further, the freedom given to students to explore and use any materials they deem appropriate enhances their ability to be creative problem solvers.

Although I have designed the lesson for my 6th grade Intro. to Engineering classes, it can be modified for any STEM-related unit. Additionally, the concept of using Makey Makey and scratch.mit.edu — a free programming website — to design an interactive prototype can be utilized for any prototype design, not solely to design a classroom. If you are planning on implementing this lesson, be mindful of the following:

  • Although you will be giving students freedom to use any materials they desire, it helps to have cardboard, aluminum foil, hot glue, glue sticks, scissors and other miscellaneous materials available.

  • The lesson is designed for five sequential classes, but if it seems as though students are immersed in creating their designs and/or you have flexibility, you can always give them additional time to create.

  • Below is my sample prototype that you can use as an example for students.

  • Below is a video of how I created my program in Scratch. You can also use this as a model for your students.

Here are some photos of my finished prototype and how I wired it to my Makey Makey. Of note, I used craft wire to extend the alligator clip wires that come with Makey Makey.

Feel free to reach out with any questions or to share your own experience with this lesson. I would love to see what your students create!

 

O'Donnell, A. (2012). Constructivism. In APA Educational Psychology Handbook: Vol. 1. Theories, Constructs, and Critical Issues. K. R. Harris, S. Graham, and T. Urdan (Editors-in-Chief). Washgington, DC: American Psychological Association. DOI: 10.1037/13273-003

Roberts-Mahoney, H., Means, A. J., & Garrison, M. J. (2016). Netflixing human capital development: Personalized learning technology and the corporatization of K-12 education. Journal of Education Policy, 31(4), 405-420. doi:10.1080/02680939.2015.1132774